一种基于摄影测量的便携非接触式路面纹理检测方法
A Portable Non Contact Method for Road Texture Detection Based on Photogrammetry
  
中文关键词:路面抗滑  路面纹理  智能检测  摄影测量  三维重建  平均构造深度  手工铺砂法
英文关键词:pavement anti skid  pavement texture  intelligent detection  photogrammetry  3D reconstruction  MTD(Mean Texture Depth)
基金项目:
作者单位
普怡 中铁十八局集团第二工程有限公司,河北唐山063000 
摘要点击次数: 290
全文下载次数: 149
中文摘要:
      道路抗滑性能与路面纹理形貌直接相关,采集分析路面纹理可有效预测道路的抗滑性。针对常规手工铺砂法测量效率较低且非接触检测设备价格昂贵的问题,提出了一种基于摄影测量三维重建技术的路面纹理检测方法。使用常规摄像装置拍摄检测区域照片,通过开源算法OpenMVG重建出三维模型,并输入至Matlab软件中进行网格化处理和积分计算,最后与激光三角法建模和手持式三维成像建模方法对比。结果表明:三种非接触式检测方法中,激光三角法检测精度最高,摄影测量检测方式优于手持式三维成像。基于摄影测量检测的平均构造深度MTD(mean texture depth)与手工铺砂法的相关系数达到0.908 3,其能够经济、简单、有效地预测路面抗滑性能。
英文摘要:
      The anti skid performance of roads is directly related to the texture morphology of the pavement surface. Collecting and analyzing pavement texture can effectively predict a road's anti skid properties. Considering the low efficiency of the conventional manual sand spreading method and the high cost of non contact detection equipment, this paper proposes a pavement texture detection method based on photogrammetric 3D reconstruction technology. A conventional camera is employed to capture photos of the detection area, and a 3D model is reconstructed using the open source algorithm OpenMVG. This model is then processed in Matlab for meshing and integral calculation. When compared with laser triangulation modeling and handheld 3D imaging modeling methods, the results indicate that, among the three non contact detection methods, laser triangulation has the highest detection accuracy, while photogrammetric detection outperforms handheld 3D imaging. The MTD (Mean Texture Depth) obtained from photogrammetric detection has a correlation coefficient of 0.908 3 with the manual sand spreading method, demonstrating that it can economically, simply, and effectively predict pavement anti skid performance.
普怡.一种基于摄影测量的便携非接触式路面纹理检测方法[J].国防交通工程与技术,2024,22(6):72~76
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第4900286访问者     谢谢你对本刊的关注与支持

版权所有《国防交通工程与技术》编辑部
编辑部地址:河北省石家庄市北二环东路17号石家庄铁道大学 联系电话:0311-87935805  E-mail: gfjt@stdu.edu.cn
本系统由北京勤云科技发展有限公司设计