基于改进ARMA模型在地铁基坑变形预测的应用研究
An Application Study of the Improved ARMA Model Based Deformation Prediction for Subway Foundation Pit
  
中文关键词:地铁基坑  时间序列  BP神经网络  变形预测
英文关键词:subway foundation pit  time series  BP neural network  deformation prediction
基金项目:
作者单位
刘畅 中铁十八局集团第四工程有限公司天津300000 
摘要点击次数: 18
全文下载次数: 10
中文摘要:
      在基坑施工过程中为保证地铁及其周边建筑物的安全,地铁基坑的变形预测变得越来越重要。ARMA模型作为一种时间序列分析模型,在地铁基坑监测序列中常常表现出较大的趋势项,降低了ARMA的预测精度。基于BP神经网络良好的拟合能力,提取基坑监测序列的趋势项,将剩余项建立ARMA模型,对基坑监测序列进行高精度的变形预测。改进ARMA模型提高了原有ARMA模型的预测精度,为地铁基坑的预测分析提供了较好的技术参考。
英文摘要:
      In order to ensure the safety of the subway and its surrounding buildings during the construction of the foundation pit, the deformation prediction of the subway foundation pit becomes more and more important. However, as the time series analysis model, ARMA model in the subway pit monitoring sequence often shows a great trend item, the prediction accuracy of ARMA is often lowered. Based on the good fitting capability of the BP neural network, and upon the basis of extracting the trend items of the pit monitoring sequence, an ARMA model for the remaining items is established in the present paper precisely to predict the deformation of the pit. The improved ARMA model presented in this paper improves the prediction accuracy of the former ARMA model and provides a good technical reference for the prediction analysis of subway foundation pits.
刘畅.基于改进ARMA模型在地铁基坑变形预测的应用研究[J].国防交通工程与技术,2020,18(1):25~27
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第1599108访问者     谢谢你对本刊的关注与支持

版权所有《国防交通工程与技术》编辑部
编辑部地址:河北省石家庄市北二环东路17号石家庄铁道大学 联系电话:0311-87935805  E-mail: gfjt@stdu.edu.cn
本系统由北京勤云科技发展有限公司设计